Anatomy Re-do: Muscle Breakdown

My goals in Anatomy need modified. I need to streamline my standards and tweak my learning objectives for this course. The existing objectives I operate under were slightly modified from the local community college when work was done on an articulation agreement (i.e., students that earned an A or B would also receive credit from the community college upon enrollment).

To that end, I’m going to attempt to organize the presentation of material and practice activities, attempting to link these to the purpose/goals/objectives of each system. This is a process I’m going to go through for each system.

The Muscular System is first for one reason: the amount of anatomy and physiology content. This is the first system where the depth of physiology becomes an issue: everything from the details of the action potential by way of the electrochemical gradient to the chemical cascade leading to contraction to the metabolic pathways responsible for energy production allowing contraction, not to mention the Cori cycle and Oxygen debt. Basic anatomy includes micro- and gross anatomy (as seen in the skeletal system) including knowing certain muscles, i.e., memorizing their names, and the method of nomenclature, but is complicated by the three tissue types, by the impact of the microscopic arrangement upon the actions of the organ (banding, sarcomeres, SR and T-tubules, endo- to epimysium, fascicle arrangement) and the conformational changes associated with contraction, not to mention the difference in isotonic vs. isometric contraction, and linking it to origin/insertion and action. There’s a lot of information and a fair amount I’ve left off this list.

Below, I’m listing the current objective & items/activities I use. Below that will be the potential change or questions I have about the changes and I would greatly appreciate suggestions and critiques.

System Introduction

  • Body Atlas Video segment “Muscle and Bone” — bridge from skeletal system to muscular system (25 min)
    • backchannel during video for comments and questions

1. Describe the properties and function of muscle tissue

  • Flipped 6.1 — gross anatomy notes: intro to muscle function, quick review of different muscle types (both tissue and functional skeletal), nomenclature, origin/insertion, lever action, movements, muscle names/locations (14.52 min)
    • Quick listing of the functions of the muscular system
    • Done individually; checked via flipped questions to identify any lingering misunderstanding and provide analytic of completion

2. Identify the principal axial and appendicular muscles of the body; including identifying origin, insertion, and action of ten muscles

  • Blank Anterior & Posterior Muscle Man — fill in blank chart
    • Identifies key muscles of the body
    • Done individually, in class
  • Anatomy ColorPlates Packet — copies of relevant pages in the Anatomy coloring book of major axial and appendicular muscles
    • Anatomy is visual; this provides reinforcement of knowledge
    • Done individually as homework
  • Flipped notes 6.1 — gross anatomy notes: intro to muscle function, quick review of different muscle types (both tissue and functional skeletal), nomenclature, origin/insertion, lever action, movements, muscle names/locations (14.52 min)
    • Does provide different images for principal muscles of the body
    • Understanding nomenclature reinforces anatomical awareness and provides leeway in remembering different names
      • Ex. Rectus Femoris vs. Rectus abdominus — found in the thigh or abdominal region; remembering the ‘rectus’ means straight bonus information
    • Quick review of the requirements of origin or insertion, linked to basic body movements (setting stage for function of muscles)
    • Done individually; checked via flipped questions to identify any lingering misunderstanding and provide analytic of completion
  • Skeleton Diagram Insertion/Origin/Action — blank skeleton and skull in which specified muscles are drawn/colored according to origin/insertion attachments; i.e., deltoid is drawn from deltoid tuberosity on humerus to clavicle on posterior view.
    • First few done on board in front of class to demonstrate just how each muscle should be drawn and information listed
    • Individually fill in worksheet; work in small group to look up/determine origin/insertion/action in class
  • String Lab — students, in pairs, attach one end of the string (i.e., the looped end) to the appropriate location of the insertion and take the other end to the origin. Pulling on the origin end, they simulate the movement/action of the muscle.
    • Collaborative work to ‘act out’ with purpose in class
    • Focus upon ten specific muscle actions
    • More clearly presents why a particular muscle produces a particular action

3. Contrast Skeletal, cardiac and smooth muscle in terms of structure and function

  • Flipped notes 6.2 — information on structure and function of three muscle types; detail of microscopic organization of skeletal muscle; neuromuscular junction (14:02)
    • Detailed differences between muscle types
    • Done individually; checked via flipped questions to identify any lingering misunderstanding and provide analytic of completion
  • Muscle Tissue Flowchart
    • Reinforce structural differences

4. Describe the organization of skeletal muscle: (a) at the macroscopic level; (b) at the microscopic level

  • Flipped notes 6.2 — information on structure and function of three muscle types; detail of microscopic organization of skeletal muscle; neuromuscular junction (14:02)
    • Progress from fascia/periosteum to epimysium to myofilament, banding within the sarcomere, organization of thick/thin filaments, including SR and T-tubules.
    • Done individually; checked via flipped questions to identify any lingering misunderstanding and provide analytic of completion
  • Anatomy/Physiology ColorPlates Packet — copies of relevant pages in the Anatomy and Physiology coloring books of microscopic anatomy
    • Anatomy is visual; this provides reinforcement of knowledge
    • Done individually as homework

5. Explain the key steps involved in the contraction of a skeletal muscle fiber: (a) discuss the physiological changes required to contract and relax a muscle fiber; (b) discuss the protein conformation changes necessary for contraction.

  • Flipped notes 6.2 — information on structure and function of three muscle types; detail of microscopic organization of skeletal muscle; neuromuscular junction (14:02)
    • Neuromuscular junction anatomy
    • Done individually; checked via flipped questions to identify any lingering misunderstanding and provide analytic of completion
  • Flipped notes 6.3 — muscle physiology (33 slides)
    • Sliding filament theory, action potentials (electrochemical gradients, Na-K pump, graphing AP), and energy sources for contraction
    • Done individually; checked via flipped questions to identify any lingering misunderstanding and provide analytic of completion
  • Physiology ColorPlates Packet — copies of relevant pages in the Physiology coloring book
    • Processes are visual; this provides reinforcement of knowledge
    • Done individually as homework
  • Sliding Filament Theory Video — students devise video to simplify changes in protein conformation into 4 steps
    • Point is to instruct peers; posted to website
    • small group project, done in class
  • PhET Neuron Simulation Lab — simulation of action potential and physiological changes responsible
    • Individual or group, in class or homework depending upon time
  • Rabbit Muscle Lab — teased sample of muscle receives different treatments, contraction observed under the microscope
    • differences in contraction noted
    • done in class, students work in pairs

6. Compare the different types of muscle contractions

  • Flipped notes 6.3 — muscle physiology (33 slides)
    • Sliding filament theory, action potentials (electrochemical gradients, Na-K pump, graphing AP), and energy sources for contraction
    • Done individually; checked via flipped questions to identify any lingering misunderstanding and provide analytic of completion
  • Pushing the Limits: Strength video — animations of contraction, provides explanation of the power of the body and extremes of what the body can do
    • backchannel during video for comments and questions

7. Describe the mechanisms by which muscle obtains and uses energy to power contraction; distinguish between aerobic and anaerobic endurance

  • Flipped notes 6.3 — muscle physiology (33 slides)
    • Sliding filament theory, action potentials (electrochemical gradients, Na-K pump, graphing AP), and energy sources for contraction
    • Done individually; checked via flipped questions to identify any lingering misunderstanding and provide analytic of completion
  • Exercise & Cellular Respiration Lab — impact of exercise upon rate of carbon dioxide production
    • changes in carbon dioxide production noted as amount of exercise changes
    • done in class, students work in pairs
  • A Perfect Storm in the Operating Room — case study
    • interrupted case study on malignant hyperthermia
    • students answer packet questions and turn in a group report based on the last set of questions
    • small groups during class

Summary Activities

  • Disease Glog — a digital poster providing a ‘story’ about a disease
    • basic explanation about the disease, including appropriate statistics
    • explains what homeostatic imbalance is responsible for the disease
  • Blog Post — Muscular system, either or below
    • anatomy of muscle, explaining, with detail, the relationship between form and function within the system
    • physiology of muscle, linking to homeostasis for the body and how homeostasis maintained within each organ

Changes

First, it is glaringly obvious I must make changes to my videos — they need streamlined and topic/concept focused: just pics and labels for major muscles, just nomenclature, just origin/insertion, just sliding filament, just energy, etc., eliminating nice-to-know-but-not-essential items. Also, some just need to be slides, slide rocket would do the job. Some need to be augmented with Popcorn Maker: more interactivity, more quick quizzes (translation: low risk, formative assessment) during the notes for contraction and muscle energy. This would also create a more effective use of the JITT and ConcepTests ideas in my Anatomy class, allowing the recap/discussion the next day to address the issues identified during the notes.

Second, embrace the limited scope of some objectives. Looking at number 1, muscle function is basic knowledge. List it and move on. A similar change needs to occur with number 3, differences in cardiac, smooth and skeletal muscle. There’s a table in the textbook listing the differences between the tissue types; this is enough to address the objective. Simply point out the table and mention the Cardiovascular and Digestive systems will go into the depth of the specific muscle types, just like this system is used to present/discuss details of skeletal muscle.

Contraction differences, number 6, could be eliminated. As future chapters will go into greater detail for cardiac and smooth muscle and since I’m limiting the tissue differences to be presented, the only item left here is isotonic and isometric. This can be a component of context, posture vs. running for example, but does not require its own standard.

Thirdly, move in the direction of explore and develop curiosity (i.e., explore, flip, apply from flipteaching and Ramsey Musallam’s blog). This is where I’m weak.

My first thought is to make the “string lab” be the introductory activity. See if students can figure out where muscles must attach in order to produce known movements. Then, send the blank muscle man home to fill out as homework; check it first thing the next day. This would frame the nomenclature discussion. This also could lead into the microscopic anatomy: fascicle arrangement in names, leading to a review of micrographs, leading to a discussion of the structure behind the banding.

Another change is to keep the anatomy and physiology of contraction together – I’ve separated them the last couple of years. This separation hurt rather than helped this concept. The PhET lab would be done first, before even starting contraction, but right after the microscopic structure above. This sets the stage for the physiological/anatomical changes responsible for contraction.

The last concept is energy. I’m thinking the exercise cellular respiration lab should be done first. Then, the rabbit muscle lab. After the notes on energy sources/pathways, the case study. It becomes a summative application, requiring students to pull it all together.

All of these changes I hope will also make the disease glog and blog post more impactful. Allowing students to tell about one aspect of muscle function and the lack thereof.

My remaining questions: where to put in the videos? They are great stories and the backchannel during is always interesting, but is that enough to keep them? As for the color plates: limit to essentials, but should I have the students identify the essentials? Which means the students choose the muscles to know origin/insertion for, rather than me defining the list…good idea?

Should I eliminate more? Is there something I haven’t even thought of?

Please share any and all comments/suggestions. Thanks ahead of time.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s